IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-11418-7_23.html
   My bibliography  Save this book chapter

LAR-ABC, a Representation of Architectural Geometry from Concept of Spaces, to Design of Building Fabric, to Construction Simulation

In: Advances in Architectural Geometry 2014

Author

Listed:
  • Alberto Paoluzzi

    (Roma Tre University)

  • Enrico Marino

    (Roma Tre University)

  • Federico Spini

    (Roma Tre University)

Abstract

This paper discusses the application of LAR (Linear Algebraic Representation) scheme to the architectural design process. LAR is a novel representation scheme for geometric design of curves, surfaces and solids, using simple, general and well founded concepts from algebraic topology (Dicarlo et al., Comput Aided Des 46:269–274, 2014). LAR supports all topological incidence structures, including enumerative (images), decompositive (meshes) and boundary (CAD) representations. It is dimension-independent, and not restricted to regular complexes. Furthermore, LAR enjoys a neat mathematical format, being based on chains, the domains of discrete integration, and cochains, the discrete prototype of differential forms, so naturally integrating the geometric shape with the supported physical properties. The LAR representation find his roots in the design language PLaSM (Paoluzzi et al., ACM Trans. Graph 14(3):266–306, 1995; Paoluzzi, Geometric programming for computer aided design. Wiley, Chichester 2003), and is being embedded in Python and Javascript, providing the designer with powerful and simple tools for a geometric calculus of shapes. In this paper we introduce the motivation of this approach, discussing how it compares to other mixed-dimensionality representations of geometry and is supported by open-source software projects. We also discuss simple examples of use.

Suggested Citation

  • Alberto Paoluzzi & Enrico Marino & Federico Spini, 2015. "LAR-ABC, a Representation of Architectural Geometry from Concept of Spaces, to Design of Building Fabric, to Construction Simulation," Springer Books, in: Philippe Block & Jan Knippers & Niloy J. Mitra & Wenping Wang (ed.), Advances in Architectural Geometry 2014, edition 127, pages 353-372, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-11418-7_23
    DOI: 10.1007/978-3-319-11418-7_23
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-11418-7_23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.