IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-10810-0_37.html
   My bibliography  Save this book chapter

High Resolution Climate Modelling with the CCLM Regional Model for Europe and Africa

In: High Performance Computing in Science and Engineering ‘14

Author

Listed:
  • H.-J. Panitz

    (Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung Forschungsbereich Troposphäre (IMK-TRO))

  • G. Schädler

    (Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung Forschungsbereich Troposphäre (IMK-TRO))

  • M. Breil

    (Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung Forschungsbereich Troposphäre (IMK-TRO))

  • S. Mieruch

    (Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung Forschungsbereich Troposphäre (IMK-TRO))

  • H. Feldmann

    (Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung Forschungsbereich Troposphäre (IMK-TRO))

  • K. Sedlmeier

    (Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung Forschungsbereich Troposphäre (IMK-TRO))

  • N. Laube

    (Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung Forschungsbereich Troposphäre (IMK-TRO))

  • M. Uhlig

    (Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung Forschungsbereich Troposphäre (IMK-TRO))

Abstract

The High Performance Computing System (HPC) CRAY XE6 operated by HLRS is a powerful tool to study various aspects of the regional climate. Employing the regional climate model (RCM) COSMO-CLM, the research focus of IMK-TRO is on the regional atmospheric water cycle, especially on extremes, and different goals are pursued in individual research projects (MiKlip, KLIMOPASS and KLIWA). The simulation regions comprise Germany, Europe, and Africa with resolutions varying from 50 km to 2.8 km. Furthermore, different time spans are investigated. Decadal simulations are performed to assess decadal regional climate predictability. Projections of the future climate consider periods up to the end of the twenty-first century. To quantify the uncertainty of climate projections and predictions as well as the quality of the models, ensembles are built by different techniques. The Soil-Vegetion-Atmosphere-Transfer model (SVAT) VEG3D is coupled to COSMO-CLM via OASIS3-MCT to investigate the effect of soil and vegetation processes on decadal climate predictions. High resolution (2.8 km) experiments are performed for the State of Baden–Württemberg to study the potential added value and extremes. Computational capacities from 100 to 650 node–hours per simulated year (Wall Clock Time) are required for these simulations.

Suggested Citation

  • H.-J. Panitz & G. Schädler & M. Breil & S. Mieruch & H. Feldmann & K. Sedlmeier & N. Laube & M. Uhlig, 2015. "High Resolution Climate Modelling with the CCLM Regional Model for Europe and Africa," Springer Books, in: Wolfgang E. Nagel & Dietmar H. Kröner & Michael M. Resch (ed.), High Performance Computing in Science and Engineering ‘14, edition 127, pages 561-574, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-10810-0_37
    DOI: 10.1007/978-3-319-10810-0_37
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-10810-0_37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.