IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-10629-8_4.html
   My bibliography  Save this book chapter

Pedestrian Evacuation Optimization Dynamic Programming in Continuous Space and Time

In: Traffic and Granular Flow '13

Author

Listed:
  • Serge P. Hoogendoorn

    (Delft University of Technology)

  • Winnie Daamen

    (Delft University of Technology)

  • Dorine C. Duives

    (Delft University of Technology)

  • Femke L. M. van Wageningen-Kessels

    (Delft University of Technology)

Abstract

This paper deals with the optimal allocation of routes, destination, and departure times to members of a crowd, for instance in case of an evacuation or another hazardous situation in which the people need to leave the area as quickly as possible. The generic approach minimizes the evacuation times, considering the demand dependent waiting times at bottlenecks within the considered infrastructure. We present the mathematical optimization problem for both the optimal instructions, and the continuum model describing the pedestrian flow dynamics. The key contribution of the approach is that it solves the evacuation problem considering the entire solution space in a continuous manner (i.e. both the time dimension and the routing), implying that for each location and for each time instant the optimal path towards the most favorable exit is calculated, taking into consideration the traffic flow operations along the routes. The approach is generic in the sense that different network loading models can be used, and that a variety of components can be added to the optimization objective without loss of generality. Next to presenting the framework and the mathematical model, we propose an iterative numerical solver to compute the optimal instructions. We demonstrate the abilities and opportunities of this optimization framework with two case studies.

Suggested Citation

  • Serge P. Hoogendoorn & Winnie Daamen & Dorine C. Duives & Femke L. M. van Wageningen-Kessels, 2015. "Pedestrian Evacuation Optimization Dynamic Programming in Continuous Space and Time," Springer Books, in: Mohcine Chraibi & Maik Boltes & Andreas Schadschneider & Armin Seyfried (ed.), Traffic and Granular Flow '13, edition 127, pages 31-40, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-10629-8_4
    DOI: 10.1007/978-3-319-10629-8_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-10629-8_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.