Author
Listed:
- Fernando Alonso-Marroquín
(The University of Sydney, School of Civil Engineering)
- Jonathan Busch
(The University of Sydney, School of Civil Engineering)
- Álvaro Ramírez-Gómez
(Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingeniería y Diseño Industrial)
- Celia Lozano
(Universidad de Navarra, Facultad de Ciencias, Departamento de Física)
Abstract
Several models have been presented to evaluate flow rates in pedestrian dynamics, yet very few focus on the calculation of the stress experienced by pedestrians under high density. With this aim, a pedestrian dynamics model is implemented to calculate the stress developed under crowd conditions. The model is based on an extension of a granular dynamics model to account contact forces, ground reaction forces and torques in the pedestrians. Contact stiffness is obtained from biomedical journal articles, and coefficient of restitution is obtained by direct observations of energy loss in collisions. Existing rotational equations of motion are modified to incorporate a rotational viscous component, which allows pedestrians to come to a comfortable stop after a collision rather than rotating indefinitely. The shape of the pedestrian is obtained from a bird’s eye, cross sectional view of the human chest cavity and arms, which was edited to produce an enclosed shape. This shape is them approximated by a spheropolygon, which is a mathematical object that allows real-time simulation of complex-shape particles. The proposed method provides real benefits to the accuracy on particle shape representation, and rotational dynamics of pedestrians at micro-simulation level. It provides a new tool to calculate the risk of injuries and asphyxiation when people are trapped in dense crowds that lead to development of high pressure.
Suggested Citation
Fernando Alonso-Marroquín & Jonathan Busch & Álvaro Ramírez-Gómez & Celia Lozano, 2015.
"A Discrete Spheropolygon Model for Calculation of Stress in Crowd Dynamics,"
Springer Books, in: Mohcine Chraibi & Maik Boltes & Andreas Schadschneider & Armin Seyfried (ed.), Traffic and Granular Flow '13, edition 127, pages 179-186,
Springer.
Handle:
RePEc:spr:sprchp:978-3-319-10629-8_21
DOI: 10.1007/978-3-319-10629-8_21
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-10629-8_21. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.