IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-10629-8_20.html
   My bibliography  Save this book chapter

Realistic Stride Length Adaptation in the Optimal Steps Model

In: Traffic and Granular Flow '13

Author

Listed:
  • Isabella von Sivers

    (Munich University of Applied Sciences)

  • Gerta Köster

    (Munich University of Applied Sciences)

Abstract

Pedestrians move freely in an open space by stepping forward. When the navigational situation becomes difficult, say in a dense crowd, they adjust their stride length and speed. The Optimal Steps Model uses local optimization on a circle around a pedestrian to determine the next position. The target function is a navigational field. Each individual’s stride length, that is, the circle radius depends on his or her speed. This introduces a delay in adaptation, because all speed measurements involve the past. A real person, however, is more likely to react instantaneously. We model this effectively by optimizing on a disk instead of a circle. The radius is chosen in accordance with the pedestrian’s free-flow velocity. A two dimensional continuous optimization problem ensues that we solve efficiently thus maintaining fast computational speed. Our simulations closely match real walking behavior which we demonstrate for navigation around a column in a narrow corridor and behavior at a bottleneck.

Suggested Citation

  • Isabella von Sivers & Gerta Köster, 2015. "Realistic Stride Length Adaptation in the Optimal Steps Model," Springer Books, in: Mohcine Chraibi & Maik Boltes & Andreas Schadschneider & Armin Seyfried (ed.), Traffic and Granular Flow '13, edition 127, pages 171-178, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-10629-8_20
    DOI: 10.1007/978-3-319-10629-8_20
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-10629-8_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.