Author
Listed:
- Mahesh Lagadapati
(North Carolina State University, Department of Computer Science)
- Frank Mueller
(North Carolina State University, Department of Computer Science)
- Christian Engelmann
(Oak Ridge National Laboratory)
Abstract
The path to exascale high-performance computing (HPC) poses several challenges related to power, performance, resilience, productivity, programmability, data movement, and data management. Investigating the performance of parallel applications at scale on future architectures and the performance impact of different architecture choices is an important component of HPC hardware/software co-design. Simulations using models of future HPC systems and communication traces from applications running on existing HPC systems can offer an insight into the performance of future architectures. This work targets technology developed for scalable application tracing of communication events and memory profiles, but can be extended to other areas, such as I/O, control flow, and data flow. It further focuses on extreme-scale simulation of millions of Message Passing Interface (MPI) ranks using a lightweight parallel discrete event simulation (PDES) toolkit for performance evaluation. Instead of simply replaying a trace within a simulation, the approach is to generate a benchmark from it and to run this benchmark within a simulation using models to reflect the performance characteristics of future-generation HPC systems. This provides a number of benefits, such as eliminating the data intensive trace replay and enabling simulations at different scales. The presented work utilizes the ScalaTrace tool to generate scalable trace files, the ScalaBenchGen tool to generate the benchmark, and the xSim tool to run the benchmark within a simulation.
Suggested Citation
Mahesh Lagadapati & Frank Mueller & Christian Engelmann, 2014.
"Tools for Simulation and Benchmark Generation at Exascale,"
Springer Books, in: Andreas Knüpfer & José Gracia & Wolfgang E. Nagel & Michael M. Resch (ed.), Tools for High Performance Computing 2013, edition 127, chapter 0, pages 19-24,
Springer.
Handle:
RePEc:spr:sprchp:978-3-319-08144-1_2
DOI: 10.1007/978-3-319-08144-1_2
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-08144-1_2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.