IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-06820-6_17.html
   My bibliography  Save this book chapter

The Second Part of Hilbert’s Sixteenth Problem

In: Dynamical Systems with Applications using MATLAB®

Author

Listed:
  • Stephen Lynch

    (Manchester Metropolitan University School of Computing, Mathematics & Digital Technology, Department of Computing and Mathematics)

Abstract

Aims and Objectives • To describe the second part of Hilbert’s sixteenth problem. • To review the main results on the number of limit cycles of planar polynomial systems. • To consider the flow at infinity after Poincaré compactification. • To review the main results on the number of limit cycles of Liénard systems. • To prove two theorems concerning limit cycles of certain Liénard systems. On completion of this chapter the reader should be able to • state the second part of Hilbert’s sixteenth problem; • describe the main results for this problem; • compactify the plane and construct a global phase portrait which shows the behavior at infinity for some simple systems; • compare local and global results; • prove that certain systems have a unique limit cycle; • prove that a limit cycle has a certain shape for a large parameter value.

Suggested Citation

  • Stephen Lynch, 2014. "The Second Part of Hilbert’s Sixteenth Problem," Springer Books, in: Dynamical Systems with Applications using MATLAB®, edition 2, chapter 0, pages 355-376, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-06820-6_17
    DOI: 10.1007/978-3-319-06820-6_17
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-06820-6_17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.