Author
Listed:
- Claudia Czado
(Technische Universität München, Applied Statistics, Center for Mathematical Sciences)
- Eike Christian Brechmann
(Technische Universität München, Applied Statistics, Center for Mathematical Sciences)
Abstract
Uncertainty in the behavior of quantities of interest causes risk. Therefore statistics is used to estimate these quantities and assess their variability. Classical statistical inference does not allow to incorporate expert knowledge or to assess the influence of modeling assumptions on the resulting estimates. This is however possible when following a Bayesian approach which therefore has gained increasing attention in recent years. The advantage over a classical approach is that the uncertainty in quantities of interest can be quantified through the posterior distribution. We first introduce the Bayesian approach and illustrate its use in simple examples, including linear regression models. For more complex statistical models Markov Chain Monte Carlo methods are needed to obtain an approximate sample from the posterior distribution. Due to the increase in computing power over the last years such methods become more and more attractive for solving complex problems which are intractable using classical statistics, for instance spam e-mail filtering or the analysis of gene expression data. We illustrate why these methods work and introduce two most commonly used algorithms: the Gibbs sampler and Metropolis Hastings algorithms. Both methods are derived and applied to statistical models useful in risk analysis. In particular a Gibbs sampler is developed for a change point detection in yearly counts of events and for a regression model with time dependence, while a Metropolis Hastings algorithm is derived for modeling claim frequencies in an insurance context.
Suggested Citation
Claudia Czado & Eike Christian Brechmann, 2014.
"Bayesian Risk Analysis,"
Springer Books, in: Claudia Klüppelberg & Daniel Straub & Isabell M. Welpe (ed.), Risk - A Multidisciplinary Introduction, edition 127, chapter 0, pages 207-240,
Springer.
Handle:
RePEc:spr:sprchp:978-3-319-04486-6_8
DOI: 10.1007/978-3-319-04486-6_8
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-04486-6_8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.