IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-02447-9_105.html
   My bibliography  Save this book chapter

Getting Out of the Way: Collision-Avoiding Pedestrian Models Compared to the RealWorld

In: Pedestrian and Evacuation Dynamics 2012

Author

Listed:
  • Gregor Lämmel

    (Transport Systems Planning and Transport Telematics, TU Berlin)

  • Matthias Plaue

    (Department of Mathematics, TU Berlin)

Abstract

Numerical simulation of human crowds is a challenging task and a number of models to simulate pedestrian dynamics on a microscopic level have been established. One aim of those models is to reproduce a realistic, and in particular collision-free, movement of crowds in complex environments. This work investigates three approaches on their capability to reproduce a collision-free movement of pedestrian crowds in complex dynamic environments. The baseline model is the well-known social force model. While in the social force model pedestrians do not explicitly avoid each other, the second model extends the social force model to avoid collisions explicitly. The observed collision-avoiding behavior produced by the third model is reached by calculating velocity obstacles. These are obstacles in the velocity space, meaning that if a pedestrian chooses a velocity that lies inside the velocity obstacle, then a collision occur at some time. This work discusses the models and their integration in a multi-agent simulation framework. The models are tested on data from a real-world experiment conducted at Technische Universität Berlin. In this experiment, two pedestrian flows intersected at an angle of 90∘. The models’ performance with regard to the reproduction of a realistic crowds movement and their computational complexity are discussed in this work.

Suggested Citation

  • Gregor Lämmel & Matthias Plaue, 2014. "Getting Out of the Way: Collision-Avoiding Pedestrian Models Compared to the RealWorld," Springer Books, in: Ulrich Weidmann & Uwe Kirsch & Michael Schreckenberg (ed.), Pedestrian and Evacuation Dynamics 2012, edition 127, pages 1275-1289, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-02447-9_105
    DOI: 10.1007/978-3-319-02447-9_105
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-02447-9_105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.