IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-02069-3_23.html
   My bibliography  Save this book chapter

Solution of Optimal Stopping Problem Based on a Modification of Payoff Function

In: Inspired by Finance

Author

Listed:
  • Ernst Presman

    (Russian Academy of Sciences (RAS), Central Economics and Mathematics Institute (CEMI))

Abstract

An optimal stopping problem of a Markov process with infinite horizon is considered. For the case of discrete time and finite number m of states Sonin proposed an algorithm which allows to find the value function and the stopping set in no more than 2(m−1) steps. The algorithm is based on a modification of a Markov chain on each step, related to the elimination of the states which definitely belong to the continuation set. To solve the problem with arbitrary state space and to have possibility of a generalization to a continuous time, the procedure was modified in Presman (Stochastics 83(4–6):467–475, 2011). The modified procedure was based on a sequential modification of the payoff function for the same chain in such a way that the value function is the same for both problems and the modified payoff function is greater than the initial one on some set and is equal to it on the complement. In this paper, we give some examples showing that the procedure can be generalized to continuous time.

Suggested Citation

  • Ernst Presman, 2014. "Solution of Optimal Stopping Problem Based on a Modification of Payoff Function," Springer Books, in: Yuri Kabanov & Marek Rutkowski & Thaleia Zariphopoulou (ed.), Inspired by Finance, edition 127, pages 505-517, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-02069-3_23
    DOI: 10.1007/978-3-319-02069-3_23
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-02069-3_23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.