IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-02069-3_10.html
   My bibliography  Save this book chapter

Yield Curve Smoothing and Residual Variance of Fixed Income Positions

In: Inspired by Finance

Author

Listed:
  • Raphaël Douady

    (Univ. Paris 1, CES)

Abstract

We model the yield curve in any given country as an object lying in an infinite-dimensional Hilbert space, the evolution of which is driven by what is known as a cylindrical Brownian motion. We assume that volatilities and correlations do not depend on rates (which hence are Gaussian). We prove that a principal component analysis (PCA) can be made. These components are called eigenmodes or principal deformations of the yield curve in this space. We then proceed to provide the best approximation of the curve evolution by a Gaussian Heath–Jarrow–Morton model that has a given finite number of factors. Finally, we describe a method, based on finite elements, to compute the eigenmodes using historical interest rate data series and show how it can be used to compute approximate hedges which optimize a criterion depending on transaction costs and residual variance.

Suggested Citation

  • Raphaël Douady, 2014. "Yield Curve Smoothing and Residual Variance of Fixed Income Positions," Springer Books, in: Yuri Kabanov & Marek Rutkowski & Thaleia Zariphopoulou (ed.), Inspired by Finance, edition 127, pages 221-256, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-02069-3_10
    DOI: 10.1007/978-3-319-02069-3_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-02069-3_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.