IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-00209-5_6.html
   My bibliography  Save this book chapter

Computational Inverse Problems Can Drive a Big Data Revolution

In: Conversations About Challenges in Computing

Author

Listed:
  • Aslak Tveito

    (Simula Research Laboratory)

  • Are Magnus Bruaset

    (Simula Research Laboratory)

Abstract

The attendees at Simula’s Challenges in Computing conference were privileged to receive a double dose of geophysical science. First, Carsten Burstedde was named a co-winner of the Springer Computational Science and Engineering (CSE) Award for his work on mantle convection simulation. In addition, his mentor, Omar Ghattas of the University of Texas, was one of the eight invited speakers at the meeting. While Burstedde lectured on adaptive mesh refinement in simulations of the Earth’s mantle flow, Ghattas cast his net more broadly and outlined five ‘grand challenges’ in scientific computing. Geoscience is currently undergoing a ‘perfect storm’, as Ghattas described it: a convergence of immense amounts of sensor data, new supercomputers to analyse it, and improved mathematical models to plug the data into. All of these converging streams have to funnel through a bottleneck known as inverse problems. Without fundamental improvements in this essentially computational problem, Ghattas argued, we will lose much of the opportunity for extracting geophysical knowledge from the data deluge.

Suggested Citation

  • Aslak Tveito & Are Magnus Bruaset, 2013. "Computational Inverse Problems Can Drive a Big Data Revolution," Springer Books, in: Are Magnus Bruaset & Aslak Tveito (ed.), Conversations About Challenges in Computing, edition 127, chapter 6, pages 43-50, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-00209-5_6
    DOI: 10.1007/978-3-319-00209-5_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-00209-5_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.