IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-0348-9078-6_99.html
   My bibliography  Save this book chapter

Morse Theory in Differential Equations

In: Proceedings of the International Congress of Mathematicians

Author

Listed:
  • Kung-Ching Chang

    (Peking University, Department of Mathematics)

Abstract

In the study of closed geodesics, Marston Morse developed his theory on the calculus of variations in the large. The Morse inequalities, which link on one hand, the numbers of critical points in various types of a function, and on the other hand, the topological invariants of the underlying manifold, play an important role in Morse theory. Naturally, they provide an estimate for the number of critical points of a function by using the topology of the manifold. Hopefully, this topological method would deal with the existence and the multiplicity of solutions of certain nonlinear differential equations. However, in this theory, the manifold is compact, and the functions are assumed to be C2 and to have only nondegenerate critical points; all of these restrict the applications seriously. In contrast, Leray-Schauder degree theory has become a very useful topological method. In 1946, at the bicentennial conferences of Princeton University, there was much discussion of their contrast. M. Shiffman hoped that the two methods could be brought closer together “so that they may alter and improve each other, and also so that each may fill out the gaps in the scope of the other” [Pr]. Since then, great efforts have been made to extend the Morse theory. We only mention a few names of the pioneers as follows: R. Bott, E. Rothe, R. S. Palais, S. Smale, D. Gromoll, W. Meyer, A. Marino, and G. Prodi.

Suggested Citation

  • Kung-Ching Chang, 1995. "Morse Theory in Differential Equations," Springer Books, in: S. D. Chatterji (ed.), Proceedings of the International Congress of Mathematicians, pages 1065-1076, Springer.
  • Handle: RePEc:spr:sprchp:978-3-0348-9078-6_99
    DOI: 10.1007/978-3-0348-9078-6_99
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-9078-6_99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.