IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-0348-7924-8_25.html
   My bibliography  Save this book chapter

Rate of decay to equilibrium in some semilinear parabolic equations

In: Nonlinear Evolution Equations and Related Topics

Author

Listed:
  • Alain Haraux

    (Université P. & M. Curie, Laboratoire. J. L. Lions)

  • Mohamed Ali Jendoubi

    (Université de Versailles, Laboratoire de Mathématiques Appliquées UMR 7641)

  • Otared Kavian

    (Université de Versailles, Laboratoire de Mathématiques Appliquées UMR 7641)

Abstract

In this paper we prove, under various conditions, the so-called Lojasiewicz inequality $$ \left\| {E'(u + \varphi )} \right\| \geqslant \gamma {\left| {E(u + \varphi ) - E(\varphi )} \right|^{{1 - \theta }}} $$ , where θ ∈ (0, 1/2], and γ > 0, while ‖u‖ is sufficiently small and ϕ is a critical point of the energy functional E supposed to be only C2 instead of analytic in the classical settings. Here E can be for instance the energy associated to the semilinear heat equation u t = Δu-f(x,u) on a bounded domain Ω ⊂ ℝ N . As a corollary of this inequality we give the rate of convergence of the solution u(t) to an equilibrium, and we exhibit examples showing that the given rate of convergence (which depends on the exponent θ and on the critical point ϕ through the nature of the kernel of the linear operator E″(ϕ)) is optimal.

Suggested Citation

  • Alain Haraux & Mohamed Ali Jendoubi & Otared Kavian, 2003. "Rate of decay to equilibrium in some semilinear parabolic equations," Springer Books, in: Wolfgang Arendt & Haïm Brézis & Michel Pierre (ed.), Nonlinear Evolution Equations and Related Topics, pages 463-484, Springer.
  • Handle: RePEc:spr:sprchp:978-3-0348-7924-8_25
    DOI: 10.1007/978-3-0348-7924-8_25
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-7924-8_25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.