IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-0348-4161-0_12.html
   My bibliography  Save this book chapter

Über diejenigen algebraischen Gebilde, welche eindeutige Transformationen in sich zulassen

In: Mathematische Werke

Author

Listed:
  • Adolf Hurwitz

Abstract

Zusammenfassung In den nachfolgenden Zeilen beschäftige ich mich namentlich mit der Aufgabe: alle irreduzibeln algebraischen Gleichungen f = ( s , z ) = 0 $$f = (s,z) = 0$$ zu bestimmen, welche durch eine rationale eindeutig umkehrbare Transformation { s ′ = φ ( s , z ) z ′ = ψ ( s , z ) $$\left\{ \begin{gathered}s' = \varphi (s,z) \hfill \\z' = \psi (s,z) \hfill \\\end{gathered} \right.$$ in sich übergeführt werden können, oder — was offenbar auf dasselbe hinauskommt — alle diejenigen Riemann’schen Flächen (algebraischen Gebilde) anzugeben, auf welchen eine ein-eindeutige algebraische Korrespondenz (s, z; s′, z′) existiert. Der Fall, in welchem das Geschlecht p des Gebildes gleich Null oder Eins ist, bildet bei dieser Untersuchung einen leicht für sich zu behandelnden, übrigens seit langem erledigten Ausnahmefall. Ich setze deshalb im Folgenden, wenn ich nicht ausdrücklich das Gegenteil bemerke, stets voraus, dass das Geschlecht der zu betrachtenden Gebilde grösser ist als Eins.

Suggested Citation

  • Adolf Hurwitz, 1932. "Über diejenigen algebraischen Gebilde, welche eindeutige Transformationen in sich zulassen," Springer Books, in: Mathematische Werke, chapter 0, pages 241-259, Springer.
  • Handle: RePEc:spr:sprchp:978-3-0348-4161-0_12
    DOI: 10.1007/978-3-0348-4161-0_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-4161-0_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.