Author
Abstract
Zusammenfassung Bei den folgenden Untersuchungen bediene ich mich einiger abkürzenden Bezeichnungen, die ich hier vorausschicke. Wenn zwischen den Zahlenpaaren x, y und x′, y′ die Gleichungen (1) x ′ = α x + β y y ′ = γ x + δ y { $$\left. \begin{gathered}x' = \alpha x + \beta y \hfill \\y' = \gamma x + \delta y \hfill \\\end{gathered} \right\}$$ bestehen, so sage ich, dass durch die Substitution oder Transformation S = ( α , β γ , δ ) $$S = \left( \begin{gathered}\alpha ,\beta \hfill \\\gamma ,\delta \hfill \\\end{gathered} \right)$$ das Zahlenpaar x, y in das Zahlenpaar x′, y′ übergeht, oder auch dass die Substitution 8 das erstere Zahlenpaar in das letztere überführt. Die Gleichungen (1) werde ich auch wohl symbolisch durch (2) ( x ′ , y ′ ) = S ( x , y ) $$(x',y') = S(x,y)$$ andeuten. Die Zusammensetzung der Substitutionen S = ( α , β γ , δ ) , S 1 = ( α 1 , β 1 γ 1 , δ 1 ) $$S = \left( \begin{gathered}\alpha ,\beta \hfill \\\gamma ,\delta \hfill \\\end{gathered} \right),{S_1} = \left( \begin{gathered}{\alpha _1},{\beta _1} \hfill \\{\gamma _1},{\delta _1} \hfill \\\end{gathered} \right)$$ geschieht nach der Formel (3) S S 1 = ( α α 1 + β γ 1 , α β 1 + β δ 1 γ α 1 + δ γ 1 , γ β 1 + δ δ 1 ) . $$SS1 = \left( \begin{gathered}\alpha {\alpha _1} + \beta {\gamma _1},\alpha {\beta _1} + \beta {\delta _1} \hfill \\\gamma {\alpha _1} + \delta {\gamma _1},\gamma {\beta _1} + \delta {\delta _1} \hfill \\\end{gathered} \right).$$ D. h. wenn neben den Gleichungen (2) die Gleichungen ( x , y ) = S 1 ( x 1 , y 1 ) $$(x,y) = {S_1}({x_1},{y_1})$$ bestehen, so ergibt die Elimination von x, y ( x ′ , y ′ ) = S S 1 ( x 1 , y 1 ) = T ( x 1 , y 1 ) , $$(x',y') = S{S_1}({x_1},{y_1}) = T({x_1},{y_1}),$$ wo T die auf der rechten Seite der Gleichung (3) stehende Substitution bezeichnet.
Suggested Citation
Adolf Hurwitz, 1963.
"Die unimodularen Substitutionen in einem algebraischen Zahlenkörper,"
Springer Books, in: Mathematische Werke, chapter 0, pages 244-268,
Springer.
Handle:
RePEc:spr:sprchp:978-3-0348-4160-3_18
DOI: 10.1007/978-3-0348-4160-3_18
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-4160-3_18. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.