IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-0348-4160-3_18.html
   My bibliography  Save this book chapter

Die unimodularen Substitutionen in einem algebraischen Zahlenkörper

In: Mathematische Werke

Author

Listed:
  • Adolf Hurwitz

Abstract

Zusammenfassung Bei den folgenden Untersuchungen bediene ich mich einiger abkürzenden Bezeichnungen, die ich hier vorausschicke. Wenn zwischen den Zahlenpaaren x, y und x′, y′ die Gleichungen (1) x ′ = α x + β y y ′ = γ x + δ y { $$\left. \begin{gathered}x' = \alpha x + \beta y \hfill \\y' = \gamma x + \delta y \hfill \\\end{gathered} \right\}$$ bestehen, so sage ich, dass durch die Substitution oder Transformation S = ( α , β γ , δ ) $$S = \left( \begin{gathered}\alpha ,\beta \hfill \\\gamma ,\delta \hfill \\\end{gathered} \right)$$ das Zahlenpaar x, y in das Zahlenpaar x′, y′ übergeht, oder auch dass die Substitution 8 das erstere Zahlenpaar in das letztere überführt. Die Gleichungen (1) werde ich auch wohl symbolisch durch (2) ( x ′ , y ′ ) = S ( x , y ) $$(x',y') = S(x,y)$$ andeuten. Die Zusammensetzung der Substitutionen S = ( α , β γ , δ ) , S 1 = ( α 1 , β 1 γ 1 , δ 1 ) $$S = \left( \begin{gathered}\alpha ,\beta \hfill \\\gamma ,\delta \hfill \\\end{gathered} \right),{S_1} = \left( \begin{gathered}{\alpha _1},{\beta _1} \hfill \\{\gamma _1},{\delta _1} \hfill \\\end{gathered} \right)$$ geschieht nach der Formel (3) S S 1 = ( α α 1 + β γ 1 , α β 1 + β δ 1 γ α 1 + δ γ 1 , γ β 1 + δ δ 1 ) . $$SS1 = \left( \begin{gathered}\alpha {\alpha _1} + \beta {\gamma _1},\alpha {\beta _1} + \beta {\delta _1} \hfill \\\gamma {\alpha _1} + \delta {\gamma _1},\gamma {\beta _1} + \delta {\delta _1} \hfill \\\end{gathered} \right).$$ D. h. wenn neben den Gleichungen (2) die Gleichungen ( x , y ) = S 1 ( x 1 , y 1 ) $$(x,y) = {S_1}({x_1},{y_1})$$ bestehen, so ergibt die Elimination von x, y ( x ′ , y ′ ) = S S 1 ( x 1 , y 1 ) = T ( x 1 , y 1 ) , $$(x',y') = S{S_1}({x_1},{y_1}) = T({x_1},{y_1}),$$ wo T die auf der rechten Seite der Gleichung (3) stehende Substitution bezeichnet.

Suggested Citation

  • Adolf Hurwitz, 1963. "Die unimodularen Substitutionen in einem algebraischen Zahlenkörper," Springer Books, in: Mathematische Werke, chapter 0, pages 244-268, Springer.
  • Handle: RePEc:spr:sprchp:978-3-0348-4160-3_18
    DOI: 10.1007/978-3-0348-4160-3_18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-4160-3_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.