IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-0348-4160-3_15.html
   My bibliography  Save this book chapter

Über einen Fundamentalsatz der arithmetischen Theorie der algebraischen Grössen

In: Mathematische Werke

Author

Listed:
  • Adolf Hurwitz

Abstract

Zusammenfassung In meiner in den Göttinger Nachrichten (1894, S. 291–298) erschienenen Note „Über die Theorie der Ideale”1) [diese Werke, Bd. II, S. 191–197] habe ich eine Begründung der Idealtheorie gegeben, die sich auf einen algebraischen Satz stützt, der wohl als ein Fundamentalsatz der arithmetischen Theorie der algebraischen Grössen bezeichnet werden darf. Etwas allgemeiner, als es in der erwähnten Note geschehen ist, lässt sich dieser Satz folgendermassen aussprechen: Satz I. Bedeuten ϕ und ψ ganze rationale Funktionen einer Veränderlichen und ist f = ϕ · ψ, so genügt das Produkt aus irgendeinem Koeffizienten von ϕ in irgendeinen Koeffizienten von ψ einer algebraischen Gleichung, in welcher der Koeffizient der höchsten Potenz der Unbekannten gleich 1 ist und die übrigen Koeffizienten ganze ganzzahlige Funktionen der Koeffizienten von f sind.

Suggested Citation

  • Adolf Hurwitz, 1963. "Über einen Fundamentalsatz der arithmetischen Theorie der algebraischen Grössen," Springer Books, in: Mathematische Werke, chapter 0, pages 198-207, Springer.
  • Handle: RePEc:spr:sprchp:978-3-0348-4160-3_15
    DOI: 10.1007/978-3-0348-4160-3_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-4160-3_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.