Author
Listed:
- Patrick Dewilde
(Institute for Advanced Study, Technische Universität München)
- Alle-Jan Van der Veen
(Delft University of Technology, Circuits and Systems Section)
Abstract
The main objects of this chapter are “semi-separable systems,” sometimes called “quasi-separable systems.” These are systems of equations, in which the operator has a special structure, called “semi-separable” in this chapter. By this is meant that the operator, although typically infinite dimensional, has a recursive structure determined by sequences of finite matrices, called transition matrices. This type of operator occurs commonly in Dynamical System Theory for systems with a finite dimensional state space and/or in systems that arise from discretization of continuous time and space. They form a natural generalization of finite matrices and a complete theory based on sequences of finite matrices is available for them. The chapter concentrates on the invertibility of such systems: either the computation of inverses when they exist, or the computation of approximate inverses of the Moore–Penrose type when not. Semi-separable systems depend on a single principal variable (often identified with time or a single dimension in space). Although there are several types of semi-separable systems depending on the continuity of that principal variable, the present chapter concentrates on indexed systems (so-called discrete-time systems). This is the most straightforward and most appealing type for an introductory text. The main workhorse is “inner–outer factorization,” a technique that goes back to Hardy space theory and generalizes to any context of nest algebras, as is the one considered here. It is based on the definition of appropriate invariant subspaces in the range and co-range of the operator. It translates to attractive numerical algorithms, such as the celebrated “square-root algorithm,” which uses proven numerically stable operations such as QR-factorization and singular value decomposition (SVD).
Suggested Citation
Patrick Dewilde & Alle-Jan Van der Veen, 2015.
"Semi- and Quasi-separable Systems,"
Springer Books, in: Daniel Alpay (ed.), Operator Theory, edition 127, chapter 36, pages 901-930,
Springer.
Handle:
RePEc:spr:sprchp:978-3-0348-0667-1_52
DOI: 10.1007/978-3-0348-0667-1_52
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-0667-1_52. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.