IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-0348-0667-1_43.html
   My bibliography  Save this book chapter

The Algebraic Riccati Equation and Its Role in Indefinite Inner Product Spaces

In: Operator Theory

Author

Listed:
  • André C. M. Ran

    (VU University Amsterdam, Department of Mathematics)

Abstract

In this essay algebraic Riccati equations will be discussed. It turns out that Hermitian solutions of algebraic Riccati equations which originate from systems and control theory may be studied in terms of invariant Lagrangian subspaces of matrices which are selfadjoint in an indefinite inner product. The essay will describe briefly certain problems in systems and control theory where the algebraic Riccati equation plays a role. The focus in the main part of the essay will be on those aspects of the theory of matrices in indefinite inner product spaces that were motivated and largely influenced by the connection with the study of Hermitian solutions of algebraic Riccati equations. This includes the description of uniqueness and stability of invariant Lagrangian subspaces and of invariant maximal semidefinite subspaces of matrices that are selfadjoint in the indefinite inner product, which leads to the concept of the sign condition. Also, it is described how the inertia of solutions of a special type of algebraic Riccati equation may be described completely in terms of the invariant Lagrangian subspaces connected with the solutions.

Suggested Citation

  • André C. M. Ran, 2015. "The Algebraic Riccati Equation and Its Role in Indefinite Inner Product Spaces," Springer Books, in: Daniel Alpay (ed.), Operator Theory, edition 127, chapter 19, pages 451-469, Springer.
  • Handle: RePEc:spr:sprchp:978-3-0348-0667-1_43
    DOI: 10.1007/978-3-0348-0667-1_43
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-0667-1_43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.