IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-0348-0667-1_22.html
   My bibliography  Save this book chapter

Representation Theory in Clifford Analysis

In: Operator Theory

Author

Listed:
  • Vladimír Souček

    (Charles University, Mathematical Institute)

Abstract

This chapter introduces contemporary Clifford analysis as a local function theory of first-order systems of PDEs invariant under various Lie groups. A concept of a symmetry of a system of partial differential equations is the key point of view, it makes it possible to use many efficient tools from the theory of representations of simple Lie groups. A systematic approach is based on a choice of a Klein geometry (a homogeneous space M ≃ G∕P with P being a Lie subgroup of a Lie group G) and on a notion of a homogeneous (invariant) differential operator acting among sections of associated homogeneous vector bundles. The main example is the conformal group G = S p i n ( m + 1 , 1 ) $$G = Spin(m + 1,1)$$ acting on the sphere S m and the Dirac operator. The chapter contains a description of basic properties of solutions of such systems and lists many various examples of the aforementioned scheme. The introductory sections describe the Clifford algebra, its spinor representations, the conformal group of the Euclidean space, the Fegan classification of the conformally invariant first order differential operators, and a series of examples of such operators appearing in the Clifford analysis. They include the Dirac equation for spinor-valued functions, the Hodge and Moisil–Théodoresco systems for differential forms, the Hermitian Clifford analysis, the quaternionic Clifford analysis, the (generalized) Rarita–Schwinger equations, and the massless fields of higher spin. A different point of view to these first-order systems presents them as special solutions of the (twisted) Dirac equation. The second part of this chapter contains a description of basic properties of solutions of the Dirac equation, including the Fischer decomposition of spinor-valued polynomials, the Howe duality, the Taylor and the Laurent series for monogenic functions. The last two sections contains a description of the Gelfand–Tsetlin bases for the spaces of (solid) spherical monogenics and a discussion of possible future direction of research in Clifford analysis.

Suggested Citation

  • Vladimír Souček, 2015. "Representation Theory in Clifford Analysis," Springer Books, in: Daniel Alpay (ed.), Operator Theory, edition 127, chapter 53, pages 1509-1547, Springer.
  • Handle: RePEc:spr:sprchp:978-3-0348-0667-1_22
    DOI: 10.1007/978-3-0348-0667-1_22
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-0667-1_22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.