IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-0348-0667-1_12.html
   My bibliography  Save this book chapter

Fourier Transforms in Clifford Analysis

In: Operator Theory

Author

Listed:
  • Hendrik De Bie

    (Ghent University, Department of Mathematical Analysis, Faculty of Engineering and Architecture)

Abstract

This chapter gives an overview of the theory of hypercomplex Fourier transforms, which are generalized Fourier transforms in the context of Clifford analysis. The emphasis lies on three different approaches that are currently receiving a lot of attention: the eigenfunction approach, the generalized roots of −1 approach, and the characters of the spin group approach. The eigenfunction approach prescribes complex eigenvalues to the L 2 basis consisting of the Clifford–Hermite functions and is therefore strongly connected to the representation theory of the Lie superalgebra 𝔬 𝔰 𝔭 ( 1 | 2 ) $$\mathfrak{o}\mathfrak{s}\mathfrak{p}(1\vert 2)$$ . The roots of −1 approach consists of replacing all occurrences of the imaginary unit in the classical Fourier transform by roots of −1 belonging to a suitable Clifford algebra. The resulting transforms are often used in engineering. The third approach uses characters to generalize the classical Fourier transform to the setting of the group Spin(4), resp. Spin(6) for application in image processing. For each approach, precise definitions of the transforms under consideration are given, important special cases are highlighted, and a summary of the most important results is given. Also directions for further research are indicated.

Suggested Citation

  • Hendrik De Bie, 2015. "Fourier Transforms in Clifford Analysis," Springer Books, in: Daniel Alpay (ed.), Operator Theory, edition 127, chapter 58, pages 1651-1672, Springer.
  • Handle: RePEc:spr:sprchp:978-3-0348-0667-1_12
    DOI: 10.1007/978-3-0348-0667-1_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-0667-1_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.