IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-0348-0431-8_8.html
   My bibliography  Save this book chapter

Sundry topics

In: A Comprehensive Treatment of q-Calculus

Author

Listed:
  • Thomas Ernst

    (Uppsala University, Department of Mathematics)

Abstract

This chapter contains applications of the previous one. Examples are two quadratic q-hypergeometric transformations. Most of the summation formulas are given both in q-hypergeometric form and in q-binomial coefficient form for convenience. We use the q-analogue of Euler’s mirror formula to prove a summation formula. We give another proof of the q-Dixon formula by means of yet another q-analogue of Kummer’s first summation formula. We find a q-analogue of Truesdell’s function and its functional equation. The Bailey transformation for q-series is of great theoretical interest. We find a q-Taylor formula with Lagrange remainder term. Finally, bilateral q-hypergeometric series are treated.

Suggested Citation

  • Thomas Ernst, 2012. "Sundry topics," Springer Books, in: A Comprehensive Treatment of q-Calculus, edition 127, chapter 0, pages 279-307, Springer.
  • Handle: RePEc:spr:sprchp:978-3-0348-0431-8_8
    DOI: 10.1007/978-3-0348-0431-8_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-0431-8_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.