IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-0348-0382-3_17.html
   My bibliography  Save this book chapter

The new maximal measures for stochastic processes

In: Measure and Integration

Author

Listed:
  • Heinz König

    (Universität des Saarlandes, Fakultät für Mathematik und Informatik)

Abstract

In recent work the author proposed a reformed notion of stochastic processes, which in particular removes notorious problems with uncountable time domains. In case of a Polish state space the new stochastic processes are in one-to-one correspondence with the traditional ones. This implies for a stochastic process that the traditional canonical measure on the path space receives a certain distinguished maximal measure extension which has an immense domain. In the present paper we prove, under a certain local compactness condition on the Polish state space and for the time domain [0;α[, that the maximal domain in question has, for all stochastic processes, three distinguished members: the set of all continuous paths, the set of all paths with one-sided limits, and its subset of those paths which at each time are either left or right continuous. In all these cases the maximal measure of the set is equal to its outer canonical measure. However, the situation will be seen to be different for the set of the càdlàg paths, for example in the Poisson process.

Suggested Citation

  • Heinz König, 2012. "The new maximal measures for stochastic processes," Springer Books, in: Measure and Integration, edition 127, pages 369-390, Springer.
  • Handle: RePEc:spr:sprchp:978-3-0348-0382-3_17
    DOI: 10.1007/978-3-0348-0382-3_17
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-0382-3_17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.