IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-0348-0043-3_13.html
   My bibliography  Save this book chapter

Shape Dynamics. An Introduction

In: Quantum Field Theory and Gravity

Author

Listed:
  • Julian Barbour

    (College Farm)

Abstract

Shape dynamics is a completely background-independent universal framework of dynamical theories from which all absolute elements have been eliminated. For particles, only the variables that describe the shapes of the instantaneous particle configurations are dynamical. In the case of Riemannian three-geometries, the only dynamical variables are the parts of the metric that determine angles. The local scale factor plays no role. This leads to a shape-dynamic theory of gravity in which the four-dimensional diffeomorphism invariance of general relativity is replaced by three-dimensional diffeomorphism invariance and three-dimensional conformal invariance. Despite this difference of symmetry groups, it is remarkable that the predictions of the two theories – shape dynamics and general relativity – agree on spacetime foliations by hypersurfaces of constant mean extrinsic curvature. However, the two theories are distinct, with shape dynamics having a much more restrictive set of solutions. There are indications that the symmetry group of shape dynamics makes it more amenable to quantization and thus to the creation of quantum gravity. This introduction presents in simple terms the arguments for shape dynamics, its implementation techniques, and a survey of existing results.

Suggested Citation

  • Julian Barbour, 2012. "Shape Dynamics. An Introduction," Springer Books, in: Felix Finster & Olaf Müller & Marc Nardmann & Jürgen Tolksdorf & Eberhard Zeidler (ed.), Quantum Field Theory and Gravity, edition 127, pages 257-297, Springer.
  • Handle: RePEc:spr:sprchp:978-3-0348-0043-3_13
    DOI: 10.1007/978-3-0348-0043-3_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-0348-0043-3_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.