IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-031-83157-7_19.html
   My bibliography  Save this book chapter

Distinguishing Chatbot from Human

In: Machine Learning, Deep Learning and AI for Cybersecurity

Author

Listed:
  • Gauri Anil Godghase

    (San Jose State University)

  • Rishit Agrawal

    (San Jose State University)

  • Tanush Obili

    (San Jose State University)

  • Mark Stamp

    (San Jose State University)

Abstract

There have been many recent advances in the fields of generative Artificial Intelligence (AI) and Large Language Models (LLM), with the Generative Pre-trained Transformer (GPT) model being a leading “chatbot.” LLM-based chatbots have become so powerful that it may seem difficult to differentiate between human-written and machine-generated text. To analyze this problem, we have developed a new dataset consisting of more than 750,000 human-written paragraphs, with a corresponding chatbot-generated paragraph for each. Based on this dataset, we apply Machine Learning (ML) techniques to determine the origin of text (human or chatbot). Specifically, we consider two methodologies for tackling this issue: feature analysis and embeddings. Our feature analysis approach involves extracting a collection of features from the text for classification. We also explore the use of contextual embeddings and transformer-based architectures to train classification models. Our proposed solutions offer high classification accuracy and serve as useful tools for textual analysis, resulting in a better understanding of chatbot-generated text in this era of advanced AI technology.

Suggested Citation

  • Gauri Anil Godghase & Rishit Agrawal & Tanush Obili & Mark Stamp, 2025. "Distinguishing Chatbot from Human," Springer Books, in: Mark Stamp & Martin Jureček (ed.), Machine Learning, Deep Learning and AI for Cybersecurity, pages 529-564, Springer.
  • Handle: RePEc:spr:sprchp:978-3-031-83157-7_19
    DOI: 10.1007/978-3-031-83157-7_19
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-031-83157-7_19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.