IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-031-48963-1_9.html
   My bibliography  Save this book chapter

Introduction to Fuzzy Cognitive Map-Based Classification

In: Fuzzy Cognitive Maps

Author

Listed:
  • Agnieszka Jastrzębska

    (Warsaw University of Technology, Faculty of Mathematics and Information Science)

  • Gonzalo Nápoles

    (Tilburg University, Department of Cognitive Science and Artificial Intelligence)

Abstract

In this chapter, we elaborate on the construction of a FCM-based classifier for tabular data classification. The pipeline comprises exploratory data analysis, preliminary input processing, classification mechanism construction, and quality evaluation. The specifics of how to adapt an FCM to this task are discussed. We use a two-block FCM architecture. One block is specific to the input, and the second is used for class label generation. We have as many inputs as features and as many outputs as classes such that the weights are learned using Genetic Algorithms. The procedure is illustrated with a case study where we process a dataset named “wine”. The overall quality of a basic FCM-based classifier is shown, and the behavior of feature-related activation values is studied. The chapter contains a complete Python code for the elementary FCM-based classifier. The reader may conveniently follow and replicate the discussed experiment. Therefore, this chapter is specifically dedicated to those who wish to get well-acquainted with the elementary FCM-based classification model. The secondary goal of this chapter is to introduce notions essential to tabular data classification. These notions are utilized in the next chapters devoted to more advanced data classification models.

Suggested Citation

  • Agnieszka Jastrzębska & Gonzalo Nápoles, 2024. "Introduction to Fuzzy Cognitive Map-Based Classification," Springer Books, in: Philippe J. Giabbanelli & Gonzalo Nápoles (ed.), Fuzzy Cognitive Maps, chapter 0, pages 165-192, Springer.
  • Handle: RePEc:spr:sprchp:978-3-031-48963-1_9
    DOI: 10.1007/978-3-031-48963-1_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-031-48963-1_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.