IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-031-40846-5_33.html
   My bibliography  Save this book chapter

The Social Epistemology of Mathematical Proof

In: Handbook of the History and Philosophy of Mathematical Practice

Author

Listed:
  • Line Edslev Andersen

    (Aarhus University)

Abstract

If we want to understand why mathematical knowledge is extraordinarily reliable, we need to consider both the nature of mathematical arguments and mathematical practice as a social practice. Mathematical knowledge is extraordinarily reliable because arguments in mathematics take the form of deductive mathematical proofs. Deductive mathematical proofs are surveyable in the sense that they can be checked step by step by different experts, and a purported proof is only accepted as a proof by the mathematical community once a number of experts have checked the proof. Hence, the reliability of the body of mathematical knowledge is in part obtained through the surveyability of proofs and the social process of proof validation. This chapter reviews work relating to (1) the norm in the mathematical community of only counting as argument deductive mathematical proof, and (2) the norm of only counting as deductive mathematical proof an argument that has been confirmed to be a deductive mathematical proof by a number of experts. The chapter also presents cases of unusual mathematical proofs or arguments that challenge these norms.

Suggested Citation

  • Line Edslev Andersen, 2024. "The Social Epistemology of Mathematical Proof," Springer Books, in: Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice, pages 2069-2079, Springer.
  • Handle: RePEc:spr:sprchp:978-3-031-40846-5_33
    DOI: 10.1007/978-3-031-40846-5_33
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-031-40846-5_33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.