IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-031-17523-7_9.html
   My bibliography  Save this book chapter

Projecting Local and Global Symmetries to the Planck Scale

In: Dialogues Between Physics and Mathematics

Author

Listed:
  • Gerard ’t Hooft

    (Institute for Theoretical Physics, Faculty of Science, Department of Physics)

Abstract

The Standard Model of the elementary particles is controlled by more than 20 parameters, of which it is not known today how they can be linked to deeper principles. Any attempt to clean up this theory, in general results in producing more such parameters rather than less. Yet it is clear that, at distance scales of the order of the Planck length, the gravitational force presents itself in such a way that the need for new physical principles is evident. A stand-in-the-way is then quantum mechanics, a theory that demands the occurrence of superpositions of physical states in such a way that, when combined with general relativity, space and time themselves may require new formalisms for being used as primary frames for the descriptions of events. In previous papers the author proposed that quantum mechanics as a theory for the elementary particles should be rephrased as originating from a combination of deterministic evolution laws and discreteness at the Planck scale. This may well have a drastic effect on the symmetry structures and algebras. Local, discrete and continuous symmetries do not emerge without a cause, and we suggest that the symmetries can tell us more about fundamental constants, among which the Higgs mass is the most peculiar and the most challenging one.

Suggested Citation

  • Gerard ’t Hooft, 2022. "Projecting Local and Global Symmetries to the Planck Scale," Springer Books, in: Mo-Lin Ge & Yang-Hui He (ed.), Dialogues Between Physics and Mathematics, chapter 0, pages 215-226, Springer.
  • Handle: RePEc:spr:sprchp:978-3-031-17523-7_9
    DOI: 10.1007/978-3-031-17523-7_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-031-17523-7_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.