IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-031-13331-2_10.html
   My bibliography  Save this book chapter

Performance Bounds and Uncertainty Quantification

In: Coherence

Author

Listed:
  • David Ramírez

    (Universidad Carlos III de Madrid)

  • Ignacio Santamaría

    (Universidad de Cantabria)

  • Louis Scharf

    (Colorado State University)

Abstract

This chapter begins with the Hilbert space geometry of quadratic performance bounds and then specializes these results to the Euclidean geometry of the Cramér-Rao bound for parameters that are carried in the mean value or the covariance matrix of a MVN model. Coherence arises naturally. A concluding section on information geometry ties the Cramér-Rao bound on error covariance to the resolvability of the underlying probability distribution from which measurements are drawn.

Suggested Citation

  • David Ramírez & Ignacio Santamaría & Louis Scharf, 2022. "Performance Bounds and Uncertainty Quantification," Springer Books, in: Coherence, chapter 10, pages 297-316, Springer.
  • Handle: RePEc:spr:sprchp:978-3-031-13331-2_10
    DOI: 10.1007/978-3-031-13331-2_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-031-13331-2_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.