IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-99638-3_7.html
   My bibliography  Save this book chapter

Dynamic Withdrawals and Stochastic Mortality in GLWB Variable Annuities

In: Mathematical and Statistical Methods for Actuarial Sciences and Finance

Author

Listed:
  • Anna Rita Bacinello

    (University of Trieste, Department of Economics, Business, Mathematics and Statistics ‘Bruno de Finetti’)

  • Rosario Maggistro

    (University of Trieste, Department of Economics, Business, Mathematics and Statistics ‘Bruno de Finetti’)

  • Ivan Zoccolan

    (Generali Italia S.p.A)

Abstract

In this paper we propose a discrete time model, based on dynamic programming, to price GLWB variable annuities under the dynamic approach within a stochastic mortality framework. Our set-up is very general and only requires the Markovian property for the mortality intensity and the asset price processes. We also show the validity of the bang-bang condition for the set of discrete withdrawal strategies of the model. This result allows to drastically reduce the computational time needed to search the optimal withdrawal in the backward recursive step of our dynamic algorithm and provides, as a by-product, an interesting contract decomposition.

Suggested Citation

  • Anna Rita Bacinello & Rosario Maggistro & Ivan Zoccolan, 2022. "Dynamic Withdrawals and Stochastic Mortality in GLWB Variable Annuities," Springer Books, in: Marco Corazza & Cira Perna & Claudio Pizzi & Marilena Sibillo (ed.), Mathematical and Statistical Methods for Actuarial Sciences and Finance, pages 38-43, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-99638-3_7
    DOI: 10.1007/978-3-030-99638-3_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-99638-3_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.