IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-99638-3_49.html
   My bibliography  Save this book chapter

A Variable Selection Method for High-Dimensional Survival Data

In: Mathematical and Statistical Methods for Actuarial Sciences and Finance

Author

Listed:
  • Francesco Giordano

    (University of Salerno)

  • Sara Milito

    (University of Salerno)

  • Marialuisa Restaino

    (University of Salerno)

Abstract

Survival data with high-dimensional predictors are regularly collected in many studies. Models with a very large number of covariates are both infeasible to fit and likely to incur low predictability due to overfitting. The selection of significant variables plays a crucial role in estimating models. Even if several approaches that identify variables in presence of censored data are available in literature, there is not unanimous consensus on which method outperforms the others. Nonetheless, it is possible to exploit the advantages of methods to get the final set of covariates as good as possible. Therefore, we propose a method that combines different variable selection procedures by using the subsampling technique, for identifying as relevant those covariates that are selected most frequently by the different variable selectors on subsampled data. By a simulation study, we evaluate the performance of the proposed procedure and compare it with other techniques.

Suggested Citation

  • Francesco Giordano & Sara Milito & Marialuisa Restaino, 2022. "A Variable Selection Method for High-Dimensional Survival Data," Springer Books, in: Marco Corazza & Cira Perna & Claudio Pizzi & Marilena Sibillo (ed.), Mathematical and Statistical Methods for Actuarial Sciences and Finance, pages 303-308, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-99638-3_49
    DOI: 10.1007/978-3-030-99638-3_49
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-99638-3_49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.