IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-98661-2_95.html
   My bibliography  Save this book chapter

From Optimal Transport to Discrepancy

In: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Author

Listed:
  • Sebastian Neumayer

    (TU Berlin, Institute of Mathematics)

  • Gabriele Steidl

    (TU Berlin, Institute of Mathematics)

Abstract

A common way to quantify the “distance” between measures is via their discrepancy, also known as maximum mean discrepancy (MMD). Discrepancies are related to Sinkhorn divergences Sε with appropriate cost functions as ε →∞. In the opposite direction, if ε → 0, Sinkhorn divergences approach another important distance between measures, namely, the Wasserstein distance or more generally optimal transport “distance.” In this chapter, we investigate the limiting process for arbitrary measures on compact sets and Lipschitz continuous cost functions. In particular, we are interested in the behavior of the corresponding optimal potentials φ ̂ ε $$\hat \varphi _\varepsilon $$ , ψ ̂ ε $$\hat \psi _\varepsilon $$ , and φ ̂ K $$\hat \varphi _K$$ appearing in the dual formulation of the Sinkhorn divergences and discrepancies, respectively. While part of the results is known, we provide rigorous proofs for some relations which we have not found in this generality in the literature. Finally, we demonstrate the limiting process by numerical examples and show the behavior of the distances when used for the approximation of measures by point measures in a process called dithering.

Suggested Citation

  • Sebastian Neumayer & Gabriele Steidl, 2023. "From Optimal Transport to Discrepancy," Springer Books, in: Ke Chen & Carola-Bibiane Schönlieb & Xue-Cheng Tai & Laurent Younes (ed.), Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, chapter 50, pages 1791-1826, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-98661-2_95
    DOI: 10.1007/978-3-030-98661-2_95
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-98661-2_95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.