IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-98661-2_86.html
   My bibliography  Save this book chapter

Stochastic Shape Analysis

In: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Author

Listed:
  • Alexis Arnaudon

    (Imperial College, Department of Mathematics
    École polytechnique fédéral de Lausanne (EPFL), Blue Brain Project)

  • Darryl Holm

    (Imperial College, Department of Mathematics)

  • Stefan Sommer

    (University of Copenhagen, Department of Computer Science (DIKU))

Abstract

The chapter describes stochastic models of shapes from a Hamiltonian viewpoint, including Langevin models, Riemannian Brownian motions and stochastic variational systems. Starting from the deterministic setting of outer metrics on shape spaces and transformation groups, we discuss recent approaches to introducing noise in shape analysis from a physical or Hamiltonian point of view. We furthermore outline important applications and statistical uses of stochastic shape models, and we discuss perspectives and current research efforts in stochastic shape analysis.

Suggested Citation

  • Alexis Arnaudon & Darryl Holm & Stefan Sommer, 2023. "Stochastic Shape Analysis," Springer Books, in: Ke Chen & Carola-Bibiane Schönlieb & Xue-Cheng Tai & Laurent Younes (ed.), Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, chapter 38, pages 1325-1348, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-98661-2_86
    DOI: 10.1007/978-3-030-98661-2_86
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-98661-2_86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.