IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-98661-2_80.html
   My bibliography  Save this book chapter

Shearlets: From Theory to Deep Learning

In: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Author

Listed:
  • Gitta Kutyniok

    (Mathematisches Institut, Ludwig-Maximilians-Universität München)

Abstract

Many important problem classes are governed by anisotropic features, which typically appear as singularities concentrated on lower-dimensional embedded manifolds. Examples include edges in images or shock fronts in solutions of transport-dominated equations. Shearlets are the first representation system which exhibits optimal sparse approximation properties in combination with a unified treatment of the continuum and digital realm, leading to faithful implementations. A prominent class of applications are inverse problems, foremost in imaging science, where shearlets are utilized for sparse regularization. Recently, shearlet systems have also been used in combination with data-driven approaches, predominately deep neural networks. This chapter shall serve as an introduction to and a survey about the theory of shearlets and their applications.

Suggested Citation

  • Gitta Kutyniok, 2023. "Shearlets: From Theory to Deep Learning," Springer Books, in: Ke Chen & Carola-Bibiane Schönlieb & Xue-Cheng Tai & Laurent Younes (ed.), Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, chapter 30, pages 1095-1132, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-98661-2_80
    DOI: 10.1007/978-3-030-98661-2_80
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-98661-2_80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.