IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-98661-2_71.html

Modular ADMM-Based Strategies for Optimized Compression, Restoration, and Distributed Representations of Visual Data

In: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Author

Listed:
  • Yehuda Dar

    (Rice University, Electrical and Computer Engineering Department)

  • Alfred M. Bruckstein

    (Technion – Israel Institute of Technology, Computer Science Department)

Abstract

Iterative techniques are a well-established tool in modern imaging sciences, allowing to address complex optimization problems via sequences of simpler computational processes. This approach has been significantly expanded in recent years by iterative designs where explicit solutions of optimization subproblems were replaced by black-box applications of ready-to-use modules for denoising or compression. These modular designs are conceptually simple, yet often achieve impressive results. In this chapter, we overview the concept of modular optimization for imaging problems by focusing on structures induced by the alternating direction method of multipliers (ADMM) technique and their applications to intricate restoration and compression problems. We start by emphasizing general guidelines independent of the module type used and only then derive ADMM-based structures relying on denoising and compression methods. The wide perspective on the topic should motivate extensions of the types of problems addressed and the kinds of black boxes utilized by the modular optimization. As an example for a promising research avenue, we present our recent framework employing black-box modules for distributed representations of visual data.

Suggested Citation

  • Yehuda Dar & Alfred M. Bruckstein, 2023. "Modular ADMM-Based Strategies for Optimized Compression, Restoration, and Distributed Representations of Visual Data," Springer Books, in: Ke Chen & Carola-Bibiane Schönlieb & Xue-Cheng Tai & Laurent Younes (ed.), Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, chapter 5, pages 175-207, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-98661-2_71
    DOI: 10.1007/978-3-030-98661-2_71
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-98661-2_71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.