IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-98661-2_69.html
   My bibliography  Save this book chapter

Multi-parameter Approaches in Image Processing

In: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Author

Listed:
  • Markus Grasmair

    (NTNU)

  • Valeriya Naumova

    (Simula Consulting and SimulaMet, Machine Intelligence Department)

Abstract

Natural images often exhibit a highly complex structure that is difficult to describe using a single regularization term. Instead, many variational models for image restoration rely on different regularization terms in order to capture the different components of the image in question. While the resulting multipenalty approaches have in principle a greater potential for accurate image reconstructions than single-penalty models, their practical performance relies heavily on a good choice of the regularization parameters. In this chapter, we provide a brief overview of existing multipenalty models for image restoration tasks. Moreover, we discuss different approaches to the problem of multiparameter selection. For the numerical examples, we will focus on the balanced discrepancy principle and the L-hypersurface method applied to PDE-based image denoising problems.

Suggested Citation

  • Markus Grasmair & Valeriya Naumova, 2023. "Multi-parameter Approaches in Image Processing," Springer Books, in: Ke Chen & Carola-Bibiane Schönlieb & Xue-Cheng Tai & Laurent Younes (ed.), Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, chapter 25, pages 943-967, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-98661-2_69
    DOI: 10.1007/978-3-030-98661-2_69
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-98661-2_69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.