IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-98661-2_68.html
   My bibliography  Save this book chapter

Learned Regularizers for Inverse Problems

In: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Author

Listed:
  • Sebastian Lunz

    (University of Cambridge, Department of Applied Mathematics and Theoretical Physics)

Abstract

In the past years, there has been a surge of interest in methods to solve inverse problems that are based on neural networks and deep learning. A variety of approaches have been proposed, showing improvements in reconstruction quality over existing methods. Among those, a class of algorithms builds on the well-established variational framework, training a neural network as a regularization functional. Those approaches come with the advantage of a theoretical understanding and a stability theory that is built on existing results for variational regularization. We discuss various approaches for learning a regularization functional, aiming at giving an overview at the multiple directions investigated by the research community.

Suggested Citation

  • Sebastian Lunz, 2023. "Learned Regularizers for Inverse Problems," Springer Books, in: Ke Chen & Carola-Bibiane Schönlieb & Xue-Cheng Tai & Laurent Younes (ed.), Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, chapter 31, pages 1133-1153, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-98661-2_68
    DOI: 10.1007/978-3-030-98661-2_68
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-98661-2_68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.