IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-98661-2_66.html
   My bibliography  Save this book chapter

Bilevel Optimization Methods in Imaging

In: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Author

Listed:
  • Juan Carlos De los Reyes

    (Escuela Politécnica Nacional, Research Center for Mathematical Modelling (MODEMAT))

  • David Villacís

    (Escuela Politécnica Nacional, Research Center for Mathematical Modelling (MODEMAT))

Abstract

Optimization techniques have been widely used for image restoration tasks, as many imaging problems may be formulated as minimization ones with the recovered image as the target minimizer. Recently, novel optimization ideas also entered the scene in combination with machine learning approaches, to improve the reconstruction of images by optimally choosing different parameters/functions of interest in the models. This chapter provides a review of the latest developments concerning the latter, with special emphasis on bilevel optimization techniques and their use for learning local and nonlocal image restoration models in a supervised manner. Moreover, the use of related optimization ideas within the development of neural networks in imaging will be briefly discussed.

Suggested Citation

  • Juan Carlos De los Reyes & David Villacís, 2023. "Bilevel Optimization Methods in Imaging," Springer Books, in: Ke Chen & Carola-Bibiane Schönlieb & Xue-Cheng Tai & Laurent Younes (ed.), Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, chapter 24, pages 909-941, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-98661-2_66
    DOI: 10.1007/978-3-030-98661-2_66
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-98661-2_66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.