IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-98661-2_61.html
   My bibliography  Save this book chapter

Convex Non-convex Variational Models

In: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Author

Listed:
  • Alessandro Lanza

    (University of Bologna, Department of Mathematics)

  • Serena Morigi

    (University of Bologna, Department of Mathematics)

  • Ivan W. Selesnick

    (New York University, Department of Electrical and Computer Engineering)

  • Fiorella Sgallari

    (University of Bologna, Department of Mathematics)

Abstract

An important class of computational techniques to solve inverse problems in image processing relies on a variational approach: the optimal output is obtained by finding a minimizer of an energy function or “model” composed of two terms, the data-fidelity term, and the regularization term. Much research has focused on models where both terms are convex, which leads to convex optimization problems. However, there is evidence that non-convex regularization can improve significantly the output quality for images characterized by some sparsity property. This fostered recent research toward the investigation of optimization problems with non-convex terms. Non-convex models are notoriously difficult to handle as classical optimization algorithms can get trapped at unwanted local minimizers. To avoid the intrinsic difficulties related to non-convex optimization, the convex non-convex (CNC) strategy has been proposed, which allows the use of non-convex regularization while maintaining convexity of the total cost function. This work focuses on a general class of parameterized non-convex sparsity-inducing separable and non-separable regularizers and their associated CNC variational models. Convexity conditions for the total cost functions and related theoretical properties are discussed, together with suitable algorithms for their minimization based on a general forward-backward (FB) splitting strategy. Experiments on the two classes of considered separable and non-separable CNC variational models show their superior performance than the purely convex counterparts when applied to the discrete inverse problem of restoring sparsity-characterized images corrupted by blur and noise.

Suggested Citation

  • Alessandro Lanza & Serena Morigi & Ivan W. Selesnick & Fiorella Sgallari, 2023. "Convex Non-convex Variational Models," Springer Books, in: Ke Chen & Carola-Bibiane Schönlieb & Xue-Cheng Tai & Laurent Younes (ed.), Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, chapter 1, pages 3-59, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-98661-2_61
    DOI: 10.1007/978-3-030-98661-2_61
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-98661-2_61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.