Author
Listed:
- Hanlin Gu
(Hong Kong University of Science and Technology)
- Yin Xian
(Hong Kong Applied Science and Technology Research Institute (ASTRI))
- Ilona Christy Unarta
(Hong Kong University of Science and Technology)
- Yuan Yao
(Hong Kong University of Science and Technology)
Abstract
The cryo-electron microscopy (cryo-EM) becomes popular for macromolecular structure determination. However, the 2D images captured by cryo-EM are of high noise and often mixed with multiple heterogeneous conformations and contamination, imposing a challenge for denoising. Traditional image denoising methods and simple denoising autoencoder cannot work well when the signal-to-noise ratio (SNR) of images is meager and contamination distribution is complex. Thus it is desired to develop new effective denoising techniques to facilitate further research such as 3D reconstruction, 2D conformation classification, and so on. In this chapter, we approach the robust denoising problem for cryo-EM images by introducing a family of generative adversarial networks (GANs), called β-GAN, which is able to achieve robust estimation of certain distributional parameters under Huber contamination model with statistical optimality. To address the denoising challenges, for example, the traditional image generative model might be contaminated by a small portion of unknown outliers, β-GANs are exploited to enhance the robustness of denoising autoencoder. Our proposed method is evaluated by both a simulated dataset on the Thermus aquaticus RNA polymerase (RNAP) and a real-world dataset on the Plasmodium falciparum 80S ribosome dataset (EMPIAR-10028), in terms of mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and 3D reconstruction as well. Quantitative comparisons show that equipped with some designs of β-GANs and the robust ℓ1-autoencoder, one can stabilize the training of GANs and achieve the state-of-the-art performance of robust denoising with low SNR data and against possible information contamination. Our proposed methodology thus provides an effective tool for robust denoising of cryo-EM 2D images and helpful for 3D structure reconstruction.
Suggested Citation
Hanlin Gu & Yin Xian & Ilona Christy Unarta & Yuan Yao, 2023.
"Generative Adversarial Networks for Robust Cryo-EM Image Denoising,"
Springer Books, in: Ke Chen & Carola-Bibiane Schönlieb & Xue-Cheng Tai & Laurent Younes (ed.), Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, chapter 26, pages 969-1000,
Springer.
Handle:
RePEc:spr:sprchp:978-3-030-98661-2_126
DOI: 10.1007/978-3-030-98661-2_126
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-98661-2_126. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.