Author
Listed:
- Caroline Geiersbach
(Weierstrass Institute)
- Estefania Loayza-Romero
(University of Münster, Institute for Analysis and Numerics)
- Kathrin Welker
(Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg, Faculty of Mechanical Engineering and Civil Engineering)
Abstract
Shape optimization models with one or more shapes are considered in this chapter. Of particular interest for applications are problems in which a so-called shape functional is constrained by a partial differential equation (PDE) describing the underlying physics. A connection can be made between a classical view of shape optimization and the differential geometric structure of shape spaces. To handle problems where a shape functional depends on multiple shapes, a theoretical framework is presented, whereby the optimization variable can be represented as a vector of shapes belonging to a product shape space. The multi-shape gradient and multi-shape derivative are defined, which allows for a rigorous justification of a steepest descent method with Armijo backtracking. As long as the shapes as subsets of a hold-all domain do not intersect, solving a single deformation equation is enough to provide descent directions with respect to each shape. Additionally, a framework for handling uncertainties arising from inputs or parameters in the PDE is presented. To handle potentially high-dimensional stochastic spaces, a stochastic gradient method is proposed. A model problem is constructed, demonstrating how uncertainty can be introduced into the problem and the objective can be transformed by use of the expectation. Finally, numerical experiments in the deterministic and stochastic case are devised, which demonstrate the effectiveness of the presented algorithms.
Suggested Citation
Caroline Geiersbach & Estefania Loayza-Romero & Kathrin Welker, 2023.
"PDE-Constrained Shape Optimization: Toward Product Shape Spaces and Stochastic Models,"
Springer Books, in: Ke Chen & Carola-Bibiane Schönlieb & Xue-Cheng Tai & Laurent Younes (ed.), Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, chapter 45, pages 1585-1630,
Springer.
Handle:
RePEc:spr:sprchp:978-3-030-98661-2_120
DOI: 10.1007/978-3-030-98661-2_120
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-98661-2_120. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.