IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-98661-2_112.html
   My bibliography  Save this book chapter

Randomized Kaczmarz Method for Single Particle X-Ray Image Phase Retrieval

In: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Author

Listed:
  • Yin Xian

    (TCL Research Hong Kong)

  • Haiguang Liu

    (Microsoft Research-Asian)

  • Xuecheng Tai

    (Hong Kong Center for Cerebro-cardiovascular Health Engineering (COCHE))

  • Yang Wang

    (Hong Kong University of Science and Technology)

Abstract

In this chapter, we investigate phase retrieval algorithm for the single-particle X-ray imaging data. We present a variance-reduced randomized Kaczmarz (VR-RK) algorithm for phase retrieval. The VR-RK algorithm is inspired by the randomized Kaczmarz method and the Stochastic Variance Reduce Gradient Descent (SVRG) algorithm. Numerical experiments show that the VR-RK algorithm has a faster convergence rate than randomized Kaczmarz algorithm and the iterative projection phase retrieval methods, such as the hybrid input output (HIO) and the relaxed averaged alternating reflections (RAAR) methods. The VR-RK algorithm can recover the phases with higher accuracy, and is robust at the presence of noise. Experimental results on the scattering data from individual particles show that the VR-RK algorithm can recover phases and improve the single-particle image identification.

Suggested Citation

  • Yin Xian & Haiguang Liu & Xuecheng Tai & Yang Wang, 2023. "Randomized Kaczmarz Method for Single Particle X-Ray Image Phase Retrieval," Springer Books, in: Ke Chen & Carola-Bibiane Schönlieb & Xue-Cheng Tai & Laurent Younes (ed.), Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, chapter 36, pages 1273-1288, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-98661-2_112
    DOI: 10.1007/978-3-030-98661-2_112
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-98661-2_112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.