IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-98661-2_105.html
   My bibliography  Save this book chapter

Optimal Transport for Generative Models

In: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Author

Listed:
  • Xianfeng Gu

    (Stony Brook University, Stony Brook)

  • Na Lei

    (Dalian University of Technology)

  • Shing-Tung Yau

    (Harvard University)

Abstract

Optimal transport plays a fundamental role in deep learning. Natural data sets have intrinsic patterns, which can be summarized as the manifold distribution principle: a natural class of data can be treated as a probability distribution on a low-dimensional manifold, embedded in a high-dimensional ambient space. A deep learning system mainly accomplishes two tasks: manifold learning and probability distribution learning. Given a manifold X, all the probability measures on X form an infinite dimensional manifold, the so-called Wasserstein space. Optimal transport assigns a Riemannian metric on the Wasserstein space, the so-called Wasserstein metric, and defines Otto’s calculus, such that variational optimization can be carried out in the Wasserstein space P ( X ) $$\mathcal {P}(X)$$ . A deep learning system learns the distribution by optimizing some functionals in the Wasserstein space P ( X ) $$\mathcal {P}(X)$$ ; therefore optimal transport lays down the theoretic foundation for deep learning. This work introduces the theory of optimal transport and the profound relation between Brenier’s theorem and Alexandrov’s theorem in differential geometry via Monge-Ampère equation. We give a variational proof for Alexandrov’s theorem and convert the proof to a computational algorithm to solve the optimal transport maps. The algorithm is based on computational geometry and can be generalized to general manifold setting. Optimal transport theory and algorithms have been extensively applied in the models of generative adversarial networks (GANs). In a GAN model, the generator computes the optimal transport map (OT map), while the discriminator computes the Wasserstein distance between the generated data distribution and the real data distribution. The optimal transport theory shows the competition between the generator and the discriminator is completely unnecessary and should be replaced by collaboration. Furthermore, the regularity theory of optimal transport map explains the intrinsic reason for mode collapsing. A novel generative model is introduced, which uses an autoencoder (AE) for manifold learning and OT map for probability distribution transformation. This AE-OT model improves the theoretical rigor and transparency, as well as the computational stability and efficiency; in particular, it eliminates the mode collapsing.

Suggested Citation

  • Xianfeng Gu & Na Lei & Shing-Tung Yau, 2023. "Optimal Transport for Generative Models," Springer Books, in: Ke Chen & Carola-Bibiane Schönlieb & Xue-Cheng Tai & Laurent Younes (ed.), Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, chapter 47, pages 1659-1706, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-98661-2_105
    DOI: 10.1007/978-3-030-98661-2_105
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-98661-2_105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.