IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-95157-3_24.html
   My bibliography  Save this book chapter

Analysis of a Reduced Model of Epithelial–Mesenchymal Fate Determination in Cancer Metastasis as a Singularly-Perturbed Monotone System

In: Realization and Model Reduction of Dynamical Systems

Author

Listed:
  • M. Ali Al-Radhawi

    (Northeastern University, Department of Electrical and Computer Engineering)

  • Eduardo D. Sontag

    (Northeastern University, Departments of Bioengineering and Electrical and Computer Engineering, Departments of Mathematics and Chemical Engineering (affiliate)
    Harvard Medical School, Laboratory of Systems Pharmacology, Program in Therapeutic Science)

Abstract

Tumor metastasis is one of the main factors responsible for the high fatality rate of cancer. Metastasis can occur after malignant cells transition from the epithelial phenotype to the mesenchymal phenotype. This transformation allows cells to migrate via the circulatory system and subsequently settle in distant organs after undergoing the reverse transition from the mesenchymal to the epithelial phenotypes. The core gene regulatory network controlling these transitions consists of a system made up of coupled SNAIL/miRNA-34 and ZEB1/miRNA-200 subsystems. In this work, we formulate a mathematical model of the core regulatory motif and analyze its long-term behavior. We start by developing a detailed reaction network with 24 state variables. Assuming fast promoter and mRNA kinetics, we then show how to reduce our model to a monotone four-dimensional system. For the reduced system, monotone dynamical systems theory can be used to prove generic convergence to the set of equilibria for all bounded trajectories. The theory does not apply to the full model, which is not monotone, but we briefly discuss results for singularly-perturbed monotone systems that provide a tool to extend convergence results from reduced to full systems, under appropriate time separation assumptions.

Suggested Citation

  • M. Ali Al-Radhawi & Eduardo D. Sontag, 2022. "Analysis of a Reduced Model of Epithelial–Mesenchymal Fate Determination in Cancer Metastasis as a Singularly-Perturbed Monotone System," Springer Books, in: Christopher Beattie & Peter Benner & Mark Embree & Serkan Gugercin & Sanda Lefteriu (ed.), Realization and Model Reduction of Dynamical Systems, pages 445-460, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-95157-3_24
    DOI: 10.1007/978-3-030-95157-3_24
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-95157-3_24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.