IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-92403-4_10.html
   My bibliography  Save this book chapter

Asymptotics of Hitting Times for Perturbed Semi-Markov Processes

In: Perturbed Semi-Markov Type Processes I

Author

Listed:
  • Dmitrii Silvestrov

    (Stockholm University, Department of Mathematics)

Abstract

This chapter plays a key role in Part II. Here we apply asymptotic recurrent phase space reduction algorithms for regularly and singularly perturbed finite semi-Markov processes to an asymptotic analysis of distributions of hitting times. It is important that the hitting times are asymptotically invariant in distribution with respect to the proposed procedures for reducing the phase space. We formulate conditions that ensure that the basic perturbation conditions imposed on the original semi-Markov processes are also satisfied for semi-Markov processes with reduced phase spaces. We also give recurrent formulas for recalculating normalisation functions, limiting distributions and expectations appearing in the corresponding perturbation conditions for semi-Markov processes with reduced phase spaces. Acting in this way, we recursively reduce the asymptotic analysis to the case, where the hitting time coincides with the first transition time for the corresponding reduced semi-Markov processes and obtain theorems on weak convergence of hitting times for regularly and singularly perturbed finite semi-Markov processes. This chapter includes three sections.

Suggested Citation

  • Dmitrii Silvestrov, 2022. "Asymptotics of Hitting Times for Perturbed Semi-Markov Processes," Springer Books, in: Perturbed Semi-Markov Type Processes I, chapter 0, pages 261-306, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-92403-4_10
    DOI: 10.1007/978-3-030-92403-4_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-92403-4_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.