Author
Listed:
- Jonas Steigerwald
(University of Stuttgart, Institute of Aerospace Thermodynamics (ITLR))
- Matthias Ibach
(University of Stuttgart, Institute of Aerospace Thermodynamics (ITLR))
- Jonathan Reutzsch
(University of Stuttgart, Institute of Aerospace Thermodynamics (ITLR))
- Bernhard Weigand
(University of Stuttgart, Institute of Aerospace Thermodynamics (ITLR))
Abstract
The scenario of an impacting drop onto a film is highly relevant in many natural and technical systems. A fundamental and often required parameter of these interactions is the so called splashing threshold above which secondary droplets are generated. For interactions with differing liquid properties for the film and the impacting drop a general splashing threshold is, however, still unknown because an experimental determination is difficult to achieve. For this reason, we investigate the suitability of a numerical determination of this threshold by means of direct numerical simulation using the multiphase flow solver Free Surface 3D (FS3D). Simulations across an already existing splashing threshold are performed stemming from an empirical correlation. In order to determine the necessary grid resolution for accurately reproducing the corresponding impact regime, all interactions are simulated for several grids. A detailed grid study shows that only by using very high grid resolutions the threshold can be reproduced with a sufficient accuracy, whereas the use of coarser resolutions leads to a significant underestimation of the threshold. Additionally, simulations of highly resolved impact phenomena on thin films depend heavily on the efficient solution of the problem with most of the computational costs affiliated to solving the Pressure Poisson Equation within the FS3D framework. Therefore, the implemented multigrid solver was optimized employing advanced tree structured communication during coarsening and refinement on the levels during the solution cycle. A performance analysis of FS3D using the original and the improved multigrid solver shows that the implemented tree structured communication leads to a remarkable speed-up.
Suggested Citation
Jonas Steigerwald & Matthias Ibach & Jonathan Reutzsch & Bernhard Weigand, 2021.
"Towards the Numerical Determination of the Splashing Threshold of Two-Component Drop Film Interactions,"
Springer Books, in: Wolfgang E. Nagel & Dietmar H. Kröner & Michael M. Resch (ed.), High Performance Computing in Science and Engineering '20, pages 261-279,
Springer.
Handle:
RePEc:spr:sprchp:978-3-030-80602-6_17
DOI: 10.1007/978-3-030-80602-6_17
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-80602-6_17. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.