IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-78024-1_2.html
   My bibliography  Save this book chapter

Plane Algebraic Curves with Prescribed Singularities

In: Handbook of Geometry and Topology of Singularities II

Author

Listed:
  • Gert-Martin Greuel

    (Universität Kaiserslautern)

  • Eugenii Shustin

    (Tel Aviv University)

Abstract

We give a survey on the known results about the problem of the existence of complex and real algebraic curves in the plane with prescribed singularities up to analytic and topological equivalence. The question is whether, for a given positive integer d and a finite number of given analytic or topological singularity types, there exist a plane (irreducible) curve of degree d having singular points of the given type as its only singularities. The set of all such curves is a quasiprojective variety, which we call an equisingular family, denoted by ESF. We describe, in terms of numerical invariants of the curves and their singularities, the state of the art concerning necessary and sufficient conditions for the non-emptiness and T-smoothness (i.e., being smooth of expected dimension) of the corresponding ESF. The considered singularities can be arbitrary, but we pay special attention to plane curves with nodes and cusps, the most studied case, where still no complete answer is known in general. An important result is, however, that the necessary and the sufficient conditions show the same asymptotics for T-smooth equisingular families if the degree goes to infinity.

Suggested Citation

  • Gert-Martin Greuel & Eugenii Shustin, 2021. "Plane Algebraic Curves with Prescribed Singularities," Springer Books, in: José Luis Cisneros-Molina & Dũng Tráng Lê & José Seade (ed.), Handbook of Geometry and Topology of Singularities II, chapter 0, pages 67-122, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-78024-1_2
    DOI: 10.1007/978-3-030-78024-1_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-78024-1_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.