Author
Abstract
My purpose is to comment some claims of André Weil (1906–1998) in his letter of March 26, 1940 to his sister Simone, in particular, the following quotation: “it is essential, if mathematics is to stay as a whole, to provide a unification, which absorbs in some simple and general theories all the common substrata of the diverse branches of the science, suppressing what is not so useful and necessary, and leaving intact what is truly the specific detail of each big problem. This is the good one can achieve with axiomatics”. For Weil (and Bourbaki), the main problem was to find “strategies” for finding complex proofs of “big problems”. For that, the dialectic balance between general structures and specific details is crucial. I will focus on the fact that, for these creative mathematicians, the concept of structure is a functional concept, which has always a “strategic” creative function. The “big problem” here is Riemann Hypothesis (RH). Artin, Schmidt, Hasse, and Weil introduced an intermediary third world between, on the one hand, Riemann original hypothesis on the non-trivial zeroes of the zeta function in analytic theory of numbers, and, on the other hand, the algebraic theory of compact Riemman surfaces. The intermediary world is that of projective curves over finite fields of characteristic $$p\ge 2$$ p ≥ 2 . RH can be translated in this context and can be proved using sophisticated tools of algebraic geometry (divisors, Riemann-Roch theorem, intersection theory, Severi-Castelnuovo inequality) coupled with the action of Frobenius maps in characteristic $$p\ge 2$$ p ≥ 2 . Recently, Alain Connes proposed a new strategy and constructed a new topos theoretic framework à la Grothendieck where Weil’s proof could be transferred by analogy back to the original RH.
Suggested Citation
Jean Petitot, 2022.
"Axiomatics as a Functional Strategy for Complex Proofs: The Case of Riemann Hypothesis,"
Springer Books, in: Fernando Ferreira & Reinhard Kahle & Giovanni Sommaruga (ed.), Axiomatic Thinking II, chapter 0, pages 165-195,
Springer.
Handle:
RePEc:spr:sprchp:978-3-030-77799-9_8
DOI: 10.1007/978-3-030-77799-9_8
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-77799-9_8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.