IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-74942-2_11.html
   My bibliography  Save this book chapter

Bayesian Extreme Value Theory

In: Extreme Value Theory with Applications to Natural Hazards

Author

Listed:
  • Nicolas Bousquet

    (EDF R & D)

Abstract

This chapter provides an introduction to Bayesian statistical theory and a broad review of its application to extreme values. The Bayesian methodology differs greatly from the traditional approaches considered in the other chapters. Indeed, it requires the construction of so-called prior measures for the parameters of extreme value models and defines estimation through the minimization of a cost function adapted to the event. While Bayesian calculations (as those based on Monte Carlo Markov Chains) remain superficially discussed, this chapter focuses on modeling features, which allow expert opinion and historical knowledge to be integrated into the estimation of quantities of interest. In this respect, the Bayesian approach constitutes a methodology of increasing use, allowing the mixed treatment of aleatoric and epidemic uncertainties and adapted to the specific needs of engineers.

Suggested Citation

  • Nicolas Bousquet, 2021. "Bayesian Extreme Value Theory," Springer Books, in: Nicolas Bousquet & Pietro Bernardara (ed.), Extreme Value Theory with Applications to Natural Hazards, chapter 0, pages 271-325, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-74942-2_11
    DOI: 10.1007/978-3-030-74942-2_11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-74942-2_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.