IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-71175-7_7.html
   My bibliography  Save this book chapter

Factor Analysis of Compositional Data with a Total

In: Advances in Compositional Data Analysis

Author

Listed:
  • Carles Barceló-Vidal

    (Campus Montilivi, Edif. P4, University of Girona, Department IMAE)

  • Josep Antoni Martín-Fernández

    (Campus Montilivi, Edif. P4, University of Girona, Department IMAE)

Abstract

The sample space of a manifest random vector is of crucial importance for a latent variable model. Compositional data require an appropriate statistical analysis because they provide the relative importance of the parts of a whole. Any statistical model including variables created using the original parts should be formulated according to the geometry of the simplex. Methods based on log-ratio coordinates give a consistent framework for analyzing this type of data. Here, we introduce an approach that includes both the orthonormal log-ratio coordinates and an auxiliary variable carrying absolute information and illustrate it through the factor analysis of two real datasets.

Suggested Citation

  • Carles Barceló-Vidal & Josep Antoni Martín-Fernández, 2021. "Factor Analysis of Compositional Data with a Total," Springer Books, in: Peter Filzmoser & Karel Hron & Josep Antoni Martín-Fernández & Javier Palarea-Albaladejo (ed.), Advances in Compositional Data Analysis, pages 125-142, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-71175-7_7
    DOI: 10.1007/978-3-030-71175-7_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-71175-7_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.